

Given
$$S(x) = -x^4 + 2x^2 + 2$$

Polynomial Sunction \rightarrow Cont. everywhere

Domain $(-\infty,\infty)$
 $S(-x) = -(-x)^4 + 2(-x)^2 + 2 = -x^4 + 2x^2 + 2 = S(x)$
 $S(-x) = S(x) \rightarrow$ even Sunction \rightarrow symmetric with respect to Yaxis.

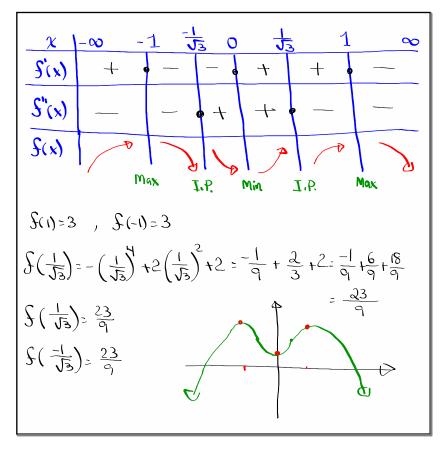
 $S(0) = 2$
 $S'(x) = -4x^3 + 4x = -4x(x^2 - 1) = -4x(x + 1)(x - 1)$

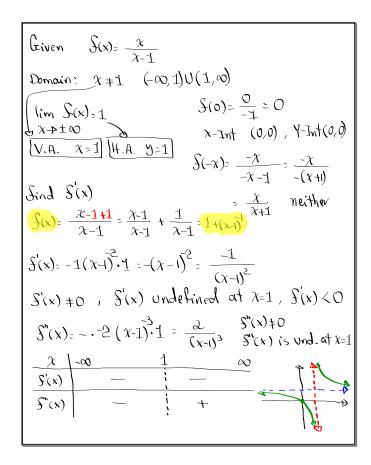
C.N. $\rightarrow S'(x) = 0$ or undefined $\rightarrow x = 0, -1, 1$
 $-4x(x + 1)(x - 1) = 0$

C.P. $(0, S(0)) = (0, 2)$ $(1, 3)$ $(1, S(0)), (-1, S(-1)) \Rightarrow (-1, 3)$
 $S''(x) = -12x^2 + 4 = -4(3x^2 - 1)$

P.I.P. $\rightarrow S''(x) = 0$ or undefined

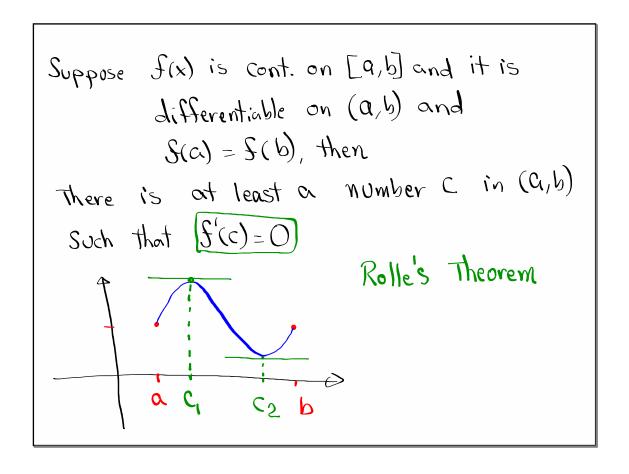
 $-4(3x^2 - 1) = 0 \rightarrow x = \pm \frac{1}{\sqrt{3}}$





Given
$$S(x) = \frac{x}{\sqrt{x^2+1}}$$

Domain $(-\infty,\infty)$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{x} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}{\sqrt{x^2+1}} = 1$
 $|\sin S(x)| = \lim_{x \to \infty} \frac{x}$



Suppose
$$S(x)$$
 is cont. on [a,b] and is diff. on (a,b) , then there is at least a number C in (a,b) Such that $S(c) = \frac{S(b) - S(a)}{b - a S(b)}$

Parallel lines have Same $S(a)$

Slope

 $S(c) = \frac{S(b) - S(a)}{b - a}$

Mean - Value Theorem

